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SUMMARY 

A three dimensional hydrodynamic sea model of an arbitrary sea area is formulated using sigma co-ordinates 
in the vertical. The solution of the equations using finite difference grids in the horizontal and the vertical is 
described. 

Discretization of the vertical viscosity term in the hydrodynamic equations using the DuFort-Frankel and 
Saul’ev methods is developed. Some numerical instabilities occur with the DuFort-Frankel method which 
can be overcome by splitting the hydrodynamic equations into equations describing the mean flow and 
equations describing the deviations from it. The computational advantages of solving these equations with 
different time steps are discussed. 

The accuracy and stability of the various methods is demonstrated for wind induced flow in a simple 
rectangular basin having dimensions representing the North Sea. 

KEY WOKIIS DuFort--Frankel Saul’ev Instability Sea Model Hydrodynamic Three-dimensional Time-splitting 

1. INTRODUCTION 

The explicit time integration method for the solution of the two dimensional and three dimensional 
hydrodynamic equations which describe motion in a sea area is used extensively in oceanographic 
problems, although implicit methods are becoming more popular. 

In a two dimensional vcrtically integrated model the length of the time step used with the explicit 
method to integrate the hydrodynamic equations is in general governed by the speed of 
propagation of the free surface wave (the Courant- Friedrich-Lewy (C.F.L.) criterion). In a three 
dimensional model, if an explicit time integration method is used then besides the C.F.L. stability 
condition there is also a condition imposed by the vertical diffusion term which is related to the 
magnitude of the vertical eddy viscosity and the water depth. In many problems, particularly in the 
application of three dimensional models to flow in an estuary,lS2 where the vertical viscosity can be 
high (of order 1000 cm2/s) and the water depth in places is shallow (typically less than 5 m) then the 
magnitude of the time step used to integrate the hydrodynamic equations is determined by the 
stability condition associated with the vertical diffusion term. In many cases this forces the time 
step to be an order of magnitude less than that determined by the CFL criterion. Such a small time 
step can be particularly restrictive and require considerable computer time. 

In order to overcome this problem, it is necessary to treat the diffusion term in a semi-implicit 
manner. By this method the stability condition imposed by the diffusion term is removed, although 
the equations can still be integrated forward through time using a simple time stepping algorithm. 
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In this paper the DuFort-Franke13 and the Saul'ev4 difference methods are used to represent the 
vertical diffusion term. Both methods are known5g6 to be unconditionally stable when applied to 
the solution of a one dimensional problem involving only the diffusion term. However in this paper 
we show that the application of the DuFort-Frankel method to the discretization of the vertical 
diffusion term in the three dimensional hydrodynamic equations describing flow in a sea area is not 
unconditionally stable. In fact the term in the hydrodynamic equations which involves the gradient 
of sea surface elevation influences the time step which can be used in the DuFort -Frankel method. 
The Saul'ev integration method however is not affected by the gradient term, and remains stable 
when used to integrate the diffusion term in the hydrodynamic equations. 

A number of authors"2 have noted stability problems associated with the vertical diffusion term 
when the Dufort-Frankel method was used to discretize this term in the three dimensional 
hydrodynamic equations. These authors had to use a small time step in order to retain numerical 
stability.2 Sengupta et al.' reported that their time step was restricted by the diffusion term. 

In this paper we show that this problem can be overcome by integrating the equations involving 
the mean flow and sea surface elevation gradient, separately from the equations describing the 
current structure (internal flow). By this means the influence of the elevation gradient upon the time 
step used in the DuFort-Frankel method is removed. By using this splitting approach the 
equations describing the internal flow can be integrated using a much longer time step than that 
used for the mean flow (a time splitting method). 

The time step used to integrate the external motion however is still restricted by the C.F.L. 
condition when explicit time integration is used. However, since a major part of the computation is 
involved in integrating the equations describing the internal flow, then a significant computational 
saving can be achieved by using as long a time step as possible to integrate these equations. Care 
has to be taken in the choice of this time step since the two sets of equations describing mean and 
internal flow are coupled through bottom friction and the non-linear terms. Consequently the time 
step for the internal flow cannot be too large if bottom friction is to be accurately reproduced in a 
rapidly evolving flow. (The time splitting algorithm developed here is analogous to that used by 
Davies7 for solving the three dimensional hydrodynamic equations using the Galerkin method 
through the vertical). 

In Section 2 of this paper the separation into internal and mean flows and the numerical solution 
using a sigma co-ordinate system*-'' with grid boxes through the vertical is considered. Both the 
DuFort-Frankel and the Saul'ev methods are applied to the discretization of the diffusion term 
which occurs in the equation describing the internal flow and are found to be unconditionally 
stable when applied to the solution of this equation. 

The effects of using various lengths of time step upon the accuracy of the solution are discussed in 
detail in this paper. The accuracy and stability of both the DuFort-Frankel and the Saul'ev 
methods are examined in Section 4, using an idealized linear model of the North Sea. A non-linear 
model is also considered. 

2. HYDRODYNAMIC EQUATIONS AND SIGMA CO-ORDINATE 
TRANSFORMATION 

2.1. Hydrodynamic equations 

are given by 
The non-linear hydrodynamic equations of continuity and motion, in Cartesian co-ordinates, 
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(2) 

where we denote by, 

time, 
a left handed set of Cartesian co-ordinates, with z the depth below the undisturbed surface 
undisturbed depth of water 
elevation above undisturbed depth 
components of current at depth z in directions of increasing x, y, z ,  respectively 
density of sea water 
geostrophic coefficient, taken as constant 
acceleration due to gravity 
coefficient of vertical eddy viscosity 

The surface boundary conditions, evaluated at the free surface z = - [, are given by 

with F,, G, the x, y components of the wind stress. 
The sea-bed boundary conditions, evaluated at z = h are given by 

with F,, G ,  the x, y components of bottom stress. 

friction, of the form 
In a non-linear model, bottom stress is in general parametrized using a quadratic law of bottom 

with K a coefficient of bottom friction, and ud, v, the components of current at some depth d,  below 
the sea surface. 

An alternative to (7) which is appropriate in a linear model, is a linear stress condition, namely, 

Rather than using slip conditions at the sea-bed, a no-slip bottom boundary condition can be 
used, namely, 

u h  = v h  = 0 (9) 
However in this case, Davies" has shown that it is very important to accurately resolve the high 

shear layer which occurs near the sea-bed, when this condition is used. 
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2.2. Transformation to sigma co-ordinates 

In general the depth h varies over a sea region. Therefore if the same number of grid boxes in the 
vertical, and hence the same vertical resolution, is to be maintained at each horizontal grid point, it 
is necessary to use sigma co-ordinates. 

Transforming equations (1) to (4) from the interval - i < z d h, into the constant interval 
0 < o < 1, can be accomplished using the sigma transformations, 

(10) cr = ( 2  + i)Ah + i) 
Using (lo), equations (1) to (4) in sigma co-ordinates become, 

where 

Similarly transforming surface and sea-bed boundary conditions ( 5 )  and (6) to sigma co-ordinates, 
gives, at the sea surface, 

- p ( ~ : : )  = ( h + i ) F , ,  - p ( N ? )  = ( h + i ) G ,  
0 0 

and at the sea-bed, 

where in these equations u, u,  w* are the components of velocity in sigma co-ordinates, 

3. SOLUTION USING A THREE DIMENSIONAL FINITE DIFFERENCE GRID 

3.1. Finite d@erence grid 

In this section the finite difference form of equations (11) to (14) is developed using finite 
difference grids in both the horizontal and vertical space domains. 

In the horizontal a staggered grid is used, in which [ and w are computed at the same grid point, 
denoted by a 0 in Figure 1, with u evaluated at + points and u evaluated at x points (see 
Figure 1). Grid lines are parallel and have a grid spacing of Ax and Ay respectively in the x and y 
directions (Figure 1). 

A staggered finite difference grid is also employed in the vertical, with horizontal velocity points 
situated at the centres of grid box sides (see Figure 2(a)), and vertical velocity and viscosity points at 
the centre of upper and lower faces (Figure 2(a)). The sea surface elevation point is situated in the 
centre of the upper face of the top grid box. 

In order to increase resolution in the sea surface and sea bed boundary layers (see Figure 2(a), 
(b)) a mesh of varying thickness Ao, (where k refers to the kth grid box from the sea surface) 
can be used in the vertical. 
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TY'" 
Figure 1. Horizontal finite difference grid in the x, y plane (0 denotes a [ point, + a u-point, x a u-point) 

The region from sea surface to sea-bed, is divided into m boxes of thickness Aok, through the 
vertical (Figure 2(b)). The notation used for velocity components on this grid is of the form, ui,k, u i , k ,  

w ~ , ~ ,  with i denoting the horizontal grid point (Figure 1) and k the vertical grid box (Figure 2(b)). 
Since elevation is only specified on the upper face of the top grid box (Figure 2(a)), elevation points 
are denoted by ii, where i is the horizontal grid point. If eddy viscosity is taken as constant in the 
horizontal, although varying through the vertical, then N k  denotes the eddy viscosity at level k 
(Figure 2(b)). In a practical computation, N would be related to the current velocity (see, for 
example, Reference 12); in this case N would vary in the horizontal. This variation has been 
included in the algorithms developed here, but for ease of presentation the horizontal variation of 
N is not included in the development described here. 

Centred finite differences are used to represent spatial derivatives both in the horizontal and the 
vertical. In order to satisfy surface and sea-bed boundary conditions (1 5)  and (1 6) when centred 
finite differences are used in the vertical, with the vertical grid shown in Figure 2(b), it is necessary 
to introduce fictitious current points u ~ , ~ ,  ui,o a distance Aoi/2 above the sea surface, and u ~ , ~ +  
u ~ , ~ +  a distance Aa,/2 below the sea-bed (see Figure 2(b)). 

3.2. Finite di@erence form of the boundary conditions 

conditions, in finite difference form at horizontal grid point i are given by, 
Using fictitious current points, u ~ , ~ ,  ui,o and u ~ , ~ +  u ~ , ~ +  1, surface and bottom boundary 

and 

where d i  = 05(hi  + t i  + hi+ + ii+l) and ei = 05(hi + ti + hi+, + it+,). 
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Ax 

0 J 
Wi,k+l,Nk+l 

Figure 2. (a) Three-dimensional representation of relative position of grid points. (b) Location of variables in x - z plane 
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Relating bottom stress linearly to the currents u ~ , ~ ,  ui,m at level m, gives for F,, G B  at grid point i, 

F B  I= k p u i , m ,  G" = k P V i , m  (W 
Relating bottom stress linearly to the current at the sea-bed, z = h, gives, 

If the eddy viscosity at the sea bed can be accurately determined, for example from the bed 
roughness length' and its near bed vertical variation is known, then it is reasonable to use a no- 
slip condition (equation (9)). 

An approximate form of the no-slip bottom boundary condition, (equation (9)) in finite 
difference form, is given by 

3.3. Calculation of sea suvface and sea-bed currents 

sea-bed. However sea surface and sea-bed currents can still be obtained from the model. 

current qe(ue or u,) is linearly extrapolated from interior points, using 

It is evident from Figure 2(b), that u and u grid points do not coincide with the sea surface or the 

Davies and Stephens13 used two methods to compute surface currents. In the first, the surface 

where &(uk or uk) is the current at level k. 

the form 
In the second method a linear average with the fictitious point above the sea surface was used, of 

Using the sea surface boundary condition to eliminate the velocity qo at the fictitious point gives, 

In these equations qe is the u or u component of surface current computed using linear 
extrapolation, and 4, is that computed with linear averaging. The term Q, denotes surface stresses 
F ,  or G,. 

3.4. Time splitting of the equations of motion 

It is evident from (12) and (13) that at each time step, the majority of the computational time is 
involved in evaluating the advective terms which occur in these equations. When an explicit time 
integration method is used to solve these equations, then the size of the time step is limited by the 
speed of propagation of the gravity wave (the CFL condition). However the advective terms, since 
they do not involve the gravity waves, can be integrated with a longer time step. By applying a 
splitting technique the advective terms can be integrated with a longer time step At than the linear 
terms, which are evaluated in a series of shorter time steps T. 
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Considering the u equation of motion for illustrative purposes. Writing equation (12) as two 
separate equations, the first containing the gravity waves and the second the advective terms, gives 

where 

u = ug + UA 

The u equations of motion, equations (13) can be written in a similar manner. 
In order to integrate the full equation (1 2), through a time step At, it is necessary because of the 

It is also advantageous to split equation (22) further, into a part describing the mean flow (the 

Thus, expressing u and v as, 

(24) 

C.F.L. constraint to integrate (22) through a number of shorter time steps z, where At = nz. 

external mode) and a part describing the deviations from the mean flow (the internal mode). 

u=U+u’, v=V+u’ (25) 
with U, ii denoting components of the depth mean flow, we can obtain from (22) the set of equations 

and 

By inspection it is evident that adding (26) and (27) we obtain the original equation (22). It is also 
evident that (26) can be obtained by vertically integrating equation (22) and incorporating sea 
surface and sea-bed stresses F,, F,, since 

The importance of this separation into external and internal parts, lies in the fact that 
equation (27) does not contain the free surface term yai jax (the gravity wave term). Therefore if an 
explicit time integration method is used to integrate (26) and (27) through time, then only the time 
step in (26) is governed by the C.F.L. condition. The time step in (27) does depend however upon 
stability conditions involving the vertical eddy viscosity. 

Thus, if we consider the model problem, 

3u 3% 
- = a 7  at a0 

with a a constant, then using an explicit forward time stepping method of the form, 

At 

where k denotes the k‘th grid point, and k + 1, k - 1 are grid points on either side, then it can be 
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readily that (30) is stable only if 

@At 1 
(Ao,)' ' 2 

For the case when, 

CI = N/h' 
condition (32) becomes 

1 (Aah)' 
At d -~ 

2 N  (33) 

Consequently as the vertical grid is relined, i.e. Aa decreases, or a solution is required in a shallow 
region (small h) with a high level of turbulence (high N) then At must be reduced. In many 
oceanographic problems this can lead to a time step which is smaller than that required by the 
C.F.L. condition. This problem can be avoided by using either an implicit treatment of the term 
involving the vertical eddy viscosity or by using the DuFort-Frankel method3 or that developed 
by S a ~ l ' e v . ~  

In the DuFort-Frankel method, three time levels are used, and unconditional stability is 
obtained by centring the diffusion term in time. For example applying the DuFort-Frankel 
method to equation (29), gives 

In the case of the Saul'ev method, only two time levels are used, but an alternating direction 

Upsweep (sweep direction from k low to k high), 
sweep method is employed at alternate time steps. For example, applying it to (29) gives. 

Downsweep (sweep direction from k high to k low), 

By this means an explicit time integration method is obtained (Details of the method are well 
known and the interested reader is referred to Reference 5 for a full description of its 
implementation). 

3.5. Finite difference form of the hydrodynamic equations 

Considering the continuity equation (1  l), using centred differencing in space, (see Figures 1 and 
3) at grid point i, we obtain 

where di, ei are as defined before, Aok denotes vertical grid spacing (see Figure 2(b)). 
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Figure 3. Finite difference grid over the rectangular basin, 0 a [-point, + a U-point, x a u-point -land boundary. 

In general the grid spacing in the vertical can be varied, to give enhanced resolution in the 
boundary layers. A number offinite difference representations are possible with such a grid, and the 
effect of varying grid resolution and difference scheme upon numerical accuracy is discussed in 
detail by Roache.6 

For the u equation of motion, without time splitting, equation (12) at point U i , k  gives 
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Similarly for the 0 equation of motion (13) we obtain, 

where 

c i ,k  = 0'25(ui,k + u i -  1 ,k  + %- 1 + n , k  + U i + n , k )  

6i ,k = 0 '25(v i ,k  + u i +  1 , k  + Oi+ 1 - n , k  + u i - n , k )  

(40) 

(41) 

In these equations &k and 
Davies and Stephensi3 and will not be repeated here. 

are the finite difference forms of the advective terms as given by 

We next consider briefly the time differencing of equations (37), (38) and (39). 

3.5.1. DuFort-Frankel method. The DuFort-Frankel method involves three time levels and has 
been applied previously'.2 to the solution of the hydrodynamic equations without splitting of 
internal and external flows. However both Sengupta et a/.' and Stephens2 found that the length of 
the time step for which stable solutions could be computed was determined by the viscosity term. 

Since three time levels are involved in the DuFort-Frankel method there is the possibility of 
even time step and odd time step (see Figure 4) solutions diverging.6 However this can be prevented 
by periodically averaging the solutions computed from even and odd time steps. Stephens2 time 
averaged his solution every five time steps in order to retain stability. This time averaging did 
however significantly damp the solution.2 These numerical difficulties of the DuFort-Frankel 
method are considered in detail later in this section. 

We now consider the various time levels at which the right hand sides of (37), (38) and (39) can be 
evaluated, while still retaining a forward time stepping integration method. In order to clearly 
illustrate the time stepping method, the horizontal differencing terms in (37), (38) and (39) will not 
be repeated in full but rather are represented by functions f, fl ,  f z  of [, u and u. 

Applying the DuFort-Frankel method to equation (37) with the right hand side evaluated at the 
lower time step, gives 

Tlme level 

odd 0 

even At 

odd t - 2 A t  

even 1-At 

odd t 

even ttht 

Figure 4. Schematic representation of the finite difference grid in time used with the DuFort-Frankel scheme. Time levels 
are designated alternately odd and even 
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Alternatively with the right hand side of (37) at the central time step gives 

= f (Ut, u') Y"Az - rAt 
2At (43) 

Similarly applying the DuFort-Frankel method to the linear u-equation (27) omitting the g 
subscript for convenience with the advective term separated off by time splitting, gives 

Alternatively centering the elevation gradient terms gives 

and with ( at the higher time step, we obtain 

A similar set of equations can be drived from the v equation of motion. Equation (46) involves < 
at the higher time step t + At, therefore if an explicit method is used, the continuity equation must 
be evaluated before the equations of motion. This order of evaluation is used throughout. 

In equations (42) and (43) f (u ' ,  0') represents the right hand side of (37) with u and v evaluated at 
the appropriate time. In (44), (45) and (46), f l(c) represents the gradient term with (evaluated at the 
appropriate time t ,  and f2 (u;+ 1, ukiAt, ui-"', u;- I )  represents the DuFort -Frankel time centering 
of the viscosity term in the same form as that shown in equation (34). 

Although u in equations (44), (45) and (46) appears at the higher time levels, it is possible to 
rearrange the equations so that the finite difference forms of these equations can be integrated 
forward through time in an explicit manner. 

3.5.2. Saul'ev4 method. An alternative to using a three time level DuFort-Frankel scheme is to 
use the Saul'ev4 method. This approach only uses two time levels in the equation of motion; 
however it does involve a sweep method through the vertical. The direction of this sweep has to be 
alternated every time step in order to avoid any bias in the m e t h ~ d . ~  

When the Saul'ev method is used to represent the diffusion term, then forward time stepping is 
employed to integrate (37) forward in time, thus, 

=J'(u', 0') (47) 
r+"" - i' 

At 

Applying the Saul'ev method to the linear u-equation of motion, gives, 
Upsweep (sweep in direction of increasing k,  i.e. from sea surface to sea-bed) 

Downsweep (sweep in direction of decreasing k,  i.e. from sea-bed to sea surface), 

Similar finite difference equations can be developed for the u equation of motion. 
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In equation (47) f ( u f ,  u') represents the right hand side of (37) with u and v evaluated at time t. In 
(48) and (49) f1(Cf+*') represents the gradient term with 5 evaluated at t + At. The other possibility 
is to evaluate [ at time t. In these equations f i  represents the Saul'ev differencing of the viscosity 
term in the form shown in equations (35) and (36). 

4. TEST CALCULATIONS WITHOUT TIME SPLITTING 

In order to compare the accuracies of the DuFort-Frankel method and that due to Saul'ev; the 
wind induced circulation in a rectangular closed basin has been calculated. The rectangular basin 
(Figure 3) has dimensions and rotation representative of the North Sea. The water was initially at 
rest, and motion in the basin was generated by a uniform northerly wind stress of 15 dyn/cm2. 
Parameters used in the calculation were Ax = 400/9 km; Ay = 800/17 km; k = 65 m; y = 0.44k-', 
p = 1.025g/cm3; g = 981 cm2/s; F ,  = 0 and G, = - 15 dyn/cm2. 

With this particular grid spacing, using the C.F.L. condition, At < As/ J(2gk) with As the grid 
spacing, gives a maximum At = 1245 s (approx. 20 min). 

If an explicit method is used for the eddy viscosity term, then with N = 650cm2/s, and k = 65 m, 
then equation (33) with ACT = l/m, gives for the maximum time step, for a range of m, 

m = 5, At = 1300 s (approx. 21 min) 
m =  10, At = 325 s (approx. 5min) 
m = 15, At = 144.4 s (approx. 2.4 min) 
m=25, At = 52 s (approx. 0.87min) 

A rectangular North Sea basin having the above dimensions was chosen because an accurate 
solution of this problem (using linear equations, with N = 650cm2/s) has been computed by a 
number of authors'3-' using different numerical methods. 

In order to compare the present series of calculations with those computed previously, a linear 
model was used. The advective terms S,, and S,, were omitted and h + [ was replaced by k in the 
continuity equation and in the equation of motion. A linear law of bottom friction was employed in 
which bottom stress was related to the current at the sea-bed, using equation(8) with 
k = 0.2 cmjs. l4 

4.1. Lineur model, with DuFort-Frankel method 

In an initial series of calculations with the linear model, the DuFort-Frankel method was used 
without time splitting of internal and mean flows. In the first series ofcalculations (calculations a(i), 
a(ii) and a(iii) see Table I), the right hand side of the continuity equation was evaluated at time t (see 
equations (37) and (43)) and the various time differencing options given in equations (44) to (46) were 
employed in the equations of motion. In a second series of calculations (calculations a(iv), a(v) and 
a(vi), see Table I), the right hand side of the continuity equation was evaluated at time t - At, 
together with the various time differencing options given in equations (44) to (46). These various 
options are summarized in Table I.  

Initially, a time step of 180s was used, to be consistent with other numerical c a l ~ u l a t i o n s ' ~ * ~ ~  
although subsequently a time step of 540 s was considered. These values were significantly below 
the C.F.L. condition (i.e. 1245 s). 

A range of vertical resolutions, namely m = 5,10,15 was examined. The effect of time averaging 
even and odd time step solutions after a number of time steps At upon the solution was considered 
by comparing calculations with no time averaging, with those of time averaging every 40At, 5At 
and 2At. 
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TableI. Summary of various time level options used in the 
DuFort-Frankel method, without time splitting 

Right hand Gradient term 
side of the in equations of 

Calculation evaluated at time at time 
continuity equation motion evaluated 

a 6) t t - At 
a (ii) t t 

a (4 t - At t 

a(iii) t t + At 

a (vi) t - A t  t + At 

a(iv) t - A t  t - A t  

In all cases shown in Table I the solutions became unstable before having been integrated for 
150 h, with the exception of calculations a(ii) and a(vi) which were stable for m = 5 or 10 with 
At = 180 s provided some time averaging was performed. In the case ofm = 10, time averaging every 
2At was required. 

These calculations showed that the DuFort-Frankel method without time splitting was basically 
unstable. A stable solution could be obtained provided m and At were small (i.e. m = 5, At = 180 s )  
and time averaging was employed. However the effect of time averaging was to artificially 
dampen the solution, with damping increasing the more frequently time averaging was applied. 
Also the time level at which the various terms were evaluated influenced the damping of the 
solution. Calculations showed that sea surface elevation at point B (see Figure 3) was significantly 
influenced by changing the time level at which the various terms were computed. For example 
values of ( at point B at time t = 30 h in calculation a(iii) were lower than in calculation a(ii), which 
were also slightly lower than in calculation a(vi). 

The reason for this change in [ between calculation a(iii), a(ii) and a(vi) can be understood from 
equations (42) to (46); thus, neglecting for illustrative purposes rotation, internal friction and 
external friction, then using (43) and (45) gives, for 

Case a(ii) 

(50) 

(51) 

(52)  

ut+AZ - - ut -At  + 2 A t f , ( [ ' - 2 A 2  + 2At,f(u'-"', 

Case a@), using (43) and (46) 

+ 2At,f l (rf-A'  + 2Atf (ur ,  u')) ut + A t  = ut - At 

Case a(vi), using (42) and (46) 
ut+At - - u ' - A t  + 2 A t f 1 ( ( f - A 2  + 2 A t f ( ~ ' - ~ ' ,  u * - ~ ' ) )  

Representing diagramatically time integration with the DuFort-Frankel method as a series of 
odd and even time levels (Figure 4) it is evident from equation (50) that in case a(ii), (an even 
time level) depends upon the current ZJ'-~' at other even time levels; the coupling of the odd time 
levels coming through (an odd time level). In case a(iii) however, equation (51) shows that 
u: + At (even) again depends upon (even), but is coupled to u' (odd) through the elevation 
gradient term, which involve u', u' through continuity. The arrangement of the time differencing in 
case a(vi) (equation (52)), however is such that utfAr (even) depends entirely upon ( and u at other 
even time steps and without Coriolis or friction would not be coupled to the odd time steps. 

Since coupling together of odd and even solutions by time averaging them introduces damping 
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into the solution, with more damping the more frequently they are coupled, then in an analogous 
manner, case a(iii) (equation (51)) with its coupling through the elevation gradient term of the odd 
and even levels, will be significantly more heavily damped than case a(ii) in which coupling only 
occurs through j r - 2 A t ,  and the least damped will be case a(vi) where without the frictional and 
Coriolis terms no coupling occurs. It is evident from the calculations that this conclusion is found 
in practice. 

4.2. Linear model, with Saul'ev method 

In order to compare the accuracy of the Saul'ev and DuFort-Frankel methods, the previous 
calculation of wind induced motion in a rectangle was repeated but the Saul'ev differencing method 
was used for the viscosity term. A forward time stepping method was employed and the right hand 
side of the continuity equation was evaluated at time t .  In an initial series of calculations the term 
qdj/ax was evaluated at time t + At, and in a subsequent series at time t .  

Calculation b(i). Gradient term at ( t  + At);  equations ( 4 7 ) ,  ( 48 )  and ( 4 5 ) .  Initially N was set at 
650 cm'/s and a range of time steps At from 180 s, 540 s to 900 s was employed, with m = 5,15,25 
grid boxes in the vertical. Bottom stress was computed in terms of current at the bottom level. 

Table I1 shows sea surface u and v components of current (calculated using (20) and (21)) 
computed using five and twenty-five grid boxes in the vertical, with time steps of 180 s, 540 s and 
900 s at point A in the centre of the basin (Figure 3). It is evident from this Table that with a time 
step of 180 s, no numerical instabilities occurred even with m = 25. However when the time step was 
increased to 900 s the calculation with m = 25 exhibited some physically unrealistic time step 
oscillation in u, v and [. In theory the Saul'ev method should be unconditionally stable, however it 
is evident that in the solution of the three dimensional equations this is not so. A time step of 900 s is 
below the C.F.L. condition of 1245 s for this problem and also the calculation with m = 5 was stable 

Table 11. Sea surface elevations at point B (Figure 3) and surface current at point A, at time 
t = 8.6 h and 150 h computed using the Saul'ev method for a range of time steps At = 180 s, 540 s, 

900s, with m = 5 and 25 

m = 5  m=25 
Time step Time (h) Time (h) 
At 8.6 150.0 8.6 150.0 

Sea surface ua  - 12.81 - 11.93 - 15.04 - 13.18 
current (cm/s) u, - 16.34 - 15.23 - 15.24 - 13'37 

180s Va - 49.20 - 36.98 - 48.86 - 35.65 
- 44.10 - 31.77 - 48.65 - 35.44 

Elevation (cm) 172.3 103.1 171.6 102.1 
Sea surface ULi - 13.31 - 11.92 - 16.56 - 1353 

current (cm/s) u, - 16.82 - 15.22 - 16.77 - 13.73 
540 s Va - 49.40 - 37.00 - 50.86 - 35.95 

-44.30 - 31.79 - 50.65 - 35.73 
Elevation (cm) ? 171.8 103.1 166.9 101.0 

Elevation (cm) ? 171.2 103.0 160.4 110.2 

Sea surface ua - 13.56 - 11.91 - 15.37 - 11.49 
current (cm/s) u, - 17'07 - 15.21 - 15.59 - 11.69 

900 s Va - 49.86 - 37.06 - 51.59 - 35.00 
-4474 -31.85 -51.38 -34.79 
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with a 900s time step. The problem of poor numerical accuracy when m = 25 and At = 900s is 
considered later in detail in connection with the DuFort-Frankel method. 

The effect upon the accuracy of the solution of using a 900s time step can be seen in Table 11, 
solution with m = 5 ,  by comparing currents 8.6 h after the onset of the wind field (the time when [ at 
point B is a maximum) computed using a 180 s and a 900 s time step. It is evident from the Table 
that there are some significant differences of the order of 0.8cm/s in the surface current. 

After 150 h the difference between currents computed with 180 s and 900 s time steps is less than 
0.1 cm/s. This is because at 150 h a near steady state has been reached and consequently errors in 
time discretization are no longer important. 

It is also interesting to compare the differences between sea surface currents computed by 
averaging (u,, u,) (see equation (21)) and by extrapolation (u,, u,) (see equation (20)). It is apparent 
from Table 11, that the differences between averaged and extrapolated currents diminishes as the 
number of grid boxes m increases. This is to be expected since in the limit as m goes to infinity the 
two values will coincide. Since both averaged and extrapolated currents can be easily computed, 
the differences between them can be used as a guide to the accuracy of the solution. From Table I1 it 
is apparent that solutions computed with m = 25, should be accurate in this case to the order of 
0.2 cm/s, whereas solutions computed with m = 5 would have a lower accuracy of order 3 cm/s. 
This point is also considered later in connection with Table V. 

Calculation h(ii). Gradient term at time t ;  equations ( 4 7 ) ,  ( 4 8 )  and (49).  When the Saul'ev 
method was used to integrate the hydrodynamic equations with the gradient terms a{/ax, a(/dy in 
theequations of motion evaluated at time t, i t  was not possible to obtain a stable solution for any of 
the cases considered previously. It is therefore particularly important to evaluate the continuity 
equation before the equations of motion and hence to use this computed [ at the higher time level in 
the equations of motion. Hence the order of calculation is: 

( 1 )  calculation of {(t + At) from u', u' using the continuity equation 
(2) evaluation of u(t + At), u(t + At) from the equations of motion (2) and (3) using the Saul'ev 

method with the terms a{/dx and a[/ay evaluated using [ ( t  + At), 

5. TEST CALCULATIONS WITH TIME SPLITTING O F  
INTERNAL AND EXTERNAL MOTION 

In the previous section both the DuFort-Frankel and the Saul'ev methods were applied to the 
solution of the linear hydrodynamic equations, without time splitting of internal and external 
motions. In this section we consider the application of both methods again to the linear equations, 
but now external motions and internal motions have been separated in the equations of motion, for 
example equations (26) and (27). 

5.1. Linear equations with the DuFort-Frankel method 

The continuity equation, and the two equations of motion describing the mean flow (the external 
mode) are integrated using a forward time stepping method, with a time step t. The equations 
describing the internal flow (equation (27) and its v equivalent) are integrated using the DuFort- 
Frankel method with a time step At. 

In order to examine the accuracy of the solution using a range of time steps t and At, and to test if 
the DuFort-Frankel method remains stable when external and internal motions are treated 
separately (equations (26), (27)) the previous calculations were repeated, using the time split 
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algorithm. A number of calculations were performed with a range of t = At time step, namely 180 s, 
540s, 900s and two m values of 5 and 25 were used. Hence although a splitting of internal and 
external motions was applied, the same time step was used in each i.e. t = At. 

Computed sea surface currents in the centre of the basin, point A in Figure 3 for a range of time 
steps At = t = 180 s, 540 s, 900 s, with five and twenty-five grid boxes, are given in Table 111. Sea 
surface elevation at Point B (see Figure 3) is also given. 

Values of  elevation and surface current computed with an external time step T = 180s and 
internal time steps At of 540 s and 900 s, using the DuFort-Frankel method with time splitting are 
given in Table TV. In all cases the solution remained stable. 

Table 111. Sea surface elevations at point B (Figure 3) and surface currents at point A, at time 
t = 8.6 h and 150 h computed using the time-split DuFort-Frankel method for a range of time 

steps At = T = 180s, 540s, 900s with m = 5 and 25 

Time step 
m = 5  

Time (h) 
m = 2.5 

Time (h) 

Sea surface 
current (cm/s) 

180s 

Elevation (cm) 
Sea surface 
______.___ 

current (cm/s) 

540 s 

- 12.56 
- 16.09 
-49.15 
- 4406 
1728 

_ _ _ _ _ . ~  

- 12.45 
- 15.97 
- 49.17 
- 4408 

- 11'93 
- 15.23 
- 36'97 
- 3 1.76 

103.1 
____.____ 

- 11.93 
- 15.23 
- 3697 
- 31.76 

- 13.63 
- 13.84 
- 47.85 
- 47.63 

173.7 
- 11.17 
- 11.38 
- 44.56 
- 44.35 

____ ~ 

- 13.19 
- 13.39 
- 35.63 
- 35.41 

102.1 
- 13.21 
- 13.40 
- 35.59 
- 35.37 

__-_ 

102.1 
- 

173.4 103.0 176.3 
- 

Elevation (cm) [ ~~- 

Sea surface ua - 12.05 - 11.93 -26.66 - 13.18 
current (cm/s) u, - 15.55 - 1523 - 26.97 - 13.38 

900 s u.3 - 49.35 - 36.97 - 44'94 - 35.56 
0, -44.25 - 31.76 -44.71 - 35.34 

Elevation (cm) 4 173.8 103.0 184.2 101.9 

Table IV. Sea surface elevations at  point B (Figure 3) and currents a t  point A, at  t = 8.6 h and 
150 h computed using the time-split DuFort--Frankel method with an external time step 

z = 180 s. and internal time steps At = 540s and 900s 

m=5 m = 25 
Time (h) Time (h) 

Time step 8.6 150.0 8.6 150.0 

z = 180s 
At = 540s 

Sea surface u a  
current (cm/s) u, 

v, 
ue 

Elevation (cm) i 

z = 180s 
At = 900 s 

Sea surface u a  

current (cm/s) u, 
0, 
ue 

Elevation (cm) [ 

- 1250 
- 16.02 
-49.15 
- 44.06 
172.9 
- 12.12 
- 15.62 
- 49.24 
-44.15 
172.8 

- 11.93 
- 15.23 
- 36.97 
- 31.76 
103.1 

__.____ 

- 11.93 
- 15.23 
- 36.97 
- 31.76 

103.1 

- 11.23 
- 11.43 
- 44.58 
- 44.35 
175.7 
- 2653 
- 26.84 
- 45.02 
- 44.79 

183.5 

_____-_____ 

- 13.22 
- 13.41 
- 35.59 
- 35.37 
102.2 
- 13.18 
- 13.38 
- 35.56 
- 35.34 
102. I 
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It is apparent from Tables I11 and IV, that by separating the internal and external motions it is 
possible to obtain a stable solution using the DuFort-Frankel method. The solution appears 
stable even when m = 25 and a time step At = 900s is employed (see Table 111). However it is 
evident that in this case the computed currents (in particular the u component) at  t = 8.6 h are 
significantly greater than those computed with At = 540 s or 180 s. In the case in which m = 5, 
however, there is little difference in velocities computed with At = 180 s or 900s. This suggests that 
time discretization errors, although greater when At = 900s compared with 180s are not 
responsible for the difference in accuracy which occurs when m = 25. 

In order to understand why there is a significant difference in currents computed using At = 180 s 
and 900s with m = 25 at t = 8.6 h but not when m = 5, it is necessary to consider the physics of wind 
induced flow. In the problem considered here motion is induced in a sea area at rest by the sudden 
application of a high surface wind stress. When a forward time stepping algorithm is used with the 
vertical grid spacing shown in Figure 2(b) it is evident that within the first time step a non-zero 
current can only be generated at the uppermost grid box in Figure 2(b). With the difference scheme 
used here this non-zero value propagates through the vertical at one grid point per time step. 
Consequently it takes 2m time steps for this initial disturbance to propagate from sea surface to sea- 
bed and back to the sea surface. In order for the solution to be independent of this initial ‘shock like’ 
condition a couple of propagations from sea surface to sea-bed of the disturbance would probably 
be required and this would take 4m time steps. For m = 5, it would therefore require 20 time steps to 
remove the initial conditions. With a time step as large as 900s, and m = 5, only a period of 
900 x 20s = 5 h would be required to remove the influence of the initial conditions and 
consequently in this case solution at t = 8.6 h in Tables 111 and IV would be independent of the 
initial condition. It is evident from these tables that there are only slight differences between 
solutions computed with m = 5 and At = 180s or 900s. 

Considering now the case when m = 25, which would require 4m = 100 time steps to remove the 
effect of the initial conditions. When At = 180 s, this requires a period of 5 hours, however when 
At = 900 s, a period of 25 h is required. Consequently when m = 25, the velocity at  time t = 8.6 h is 
still influenced by initial conditions, explaining the differences found in Tables 111 and IV. However 
after 150 h the various solutions given in Tables 111 and IV are not significantly different. 

As a further check on the accuracy of the computed currents when a range of internal time steps 
was used, namely At = 180 s, 540 s, 900 s, with the external time step z = 180 s and m = 25, currents at 
t = 30 hours were compared (Table V) with published  value^'^ computed using a functional 

Table V. Comparison of surface and bottom currents 30 h after the onset of the wind field computed using 25 
grids in the vertical with an external time step of 180 s and a range of internal time steps At = 180 s, 540 s, 900 s. 

Also shown are values computed by Davies and Owenls using functions in the vertical 

Sea surface 
current (cm/s) 

Sea-bed 
current (cm/s) 

Internal time step Galerkin method” 
Ten Legendre Ten Chebyshev 

At = 180 s At = 540 s At = 900 s polynomials polynomials 

- 15.01 - 16.48 - 18.33 - 15.12 - 15.06 
- 15.22 - 1668 - 18.56 
- 33.25 - 3353 - 35.75 - 33.20 - 33.20 
- 33’03 - 33..32 - 35.55 

6.75 6.53 9.38 7.03 6.96 
6.83 6.61 9.54 

11.78 11.86 11.82 11.75 12.07 
11.87 11.95 11.80 



A THREE DIMENSIONAL HYDRODYNAMIC SEA MODEL 423 

representation in the vertical and a time step of 180s. At a time t = 30 h, even with a time step of 
900 s, the effect of the initial conditions has been nearly removed and it is evident from Table V that 
computed currents obtained either by averaging or extrapolation when m = 25 are in good 
agreement with the accurate solution of Davies and OwenlS computed with a time step of 180s. 

This series of calculations has shown that by writing the hydrodynamic equations in the form of 
equations describing external and internal motion, a stable solution using the DuFort-Frankel 
method can be obtained, with a time step as large as 900 s and with vertical grid resolution as high 
as 25 vertical grid levels. This is to be compared with a time step of 52 s which would be required if a 
forward time stepping method was used to integrate the viscous term. However it is evident that in 
a wind induced flow problem in which motion is created from rest by a suddenly applied wind 
stress, it is important to use a sufficiently small time step, particularly with a high vertical grid 
resolution, if the effects of this initial shock are not to corrupt the solution. 

5.2. Linear equations with the Saul'ev method 

As we have shown a stable solution of the hydrodynamic equations could be obtained using 
the Saul'ev method without separating internal and external motion. However such a separation 
is obviously advantageous in deep water or with fine horizontal grids where the C.F.L. condition 
imposes a small time step. By performing this separation the internal flow field can be integrated 
using the Saul'ev method with a significantly longer time step than that used for the external flow. 

The implementation of the Saul'ev method with this time splitting is the same as for the 
DuFort-Frankel method. The test calculations described previously yielded similar results to 
those computed with the DuFort-Frankel method except for the case when the time step was 
900 s. In this case spurious physically unrealistic oscillations appeared in the solution of a similar 
nature to those computed without separation of internal and external flows. For this reason the 
DuFort-Frankel method was applied to the solution of the non-linear equations described in the 
next section. Also the DuFort-Frankel method has second order accuracy in time compared 
with the first order accuracy of the Saul'ev method,s and for this reason it is preferable to use 
it when the internal time step is long. 

5.3. Solution of the non-linear hydrodynamic equations 

As a further check on the accuracy and stability of the DuFort-Frankel method when the 
non-linear terms are present the previous calculation was repeated using the full non-linear 
equations (l) ,  (2) and (3). An accurate solution of this problem with which comparisons can be 
made is given in Reference 16. 

The time splitting method described previously in which the external flow was computed with 
a different time step from the internal flow and the advective terms was used. The same time 
step was used for the internal flow as for the advective terms. Following Davies,16 the linear 
time step z and the non-linear time step At were taken as z = 18Os, At = 42 = 720s. 

Calculations were performed using five and twenty-five grid boxes in the vertical. Surface, 
mid-depth and sea-bed currents computed with m = 25, agreed to within 2 cm/s (an acceptable 
error) of the accurate solution published by Davies." 

6. CONCLUDING REMARKS 

Stability analysis of the one dimensional diffusion problem' has shown that both the DuFort- 
Frankel and Saul'ev methods are unconditionally stable in this case, However in this paper we 
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have shown that when the DuFort-Frankel method is applied to the discretization of the 
vertical diffusion of momentum term in the three dimensional hydrodynamic equations it is no 
longer unconditionally stable. This point has been noted by a number of authors’.’ who found 
it necessary because of this problem to use a small time stepZ to retain numerical stability. 

In this paper we have shown that the term involving the gradient of sea surface elevation 
within the equations of motion is responsible for the instability of the DuFort-Frankel method 
when applied to the discretization of the vertical viscosity term. However when the Saul’ev 
method is used calculations show that it remains stable. 

Stable solutions using the DuFort-Frankel method have however been obtained by splitting 
the hydrodynamic equations into a set describing the mean flow and a set describing deviations 
from the mean flow. This latter set contain the vertical viscous term but not the term involving 
the gradient of sea surface elevation. 

Once the hydrodynamic equations are separated in this manner it is computationally efficient 
to integrate them using different time steps. This would be particularly economic in a model of 
a deep estuary when a fine grid was used in the horizontal. In such a situation the C.F.L. 
condition would require the use of a small time step for the mean flow, although the internal 
flow could be integrated with a much longer time step. 

Calculations are presently in progress using the time-split DuFort-Frankel method developed 
here in more physically realistic situations and results will be reported subsequently. 
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